
Immunosenescence and Other Risk Factors Affecting Vaccination Success in Old Age

Abstract
The collective loss of immune protection during aging leads to poor vaccine responses and an increased 

severity of infection for the elderly. Here, we review our current understanding of effects of aging on 

the cellular and molecular dysregulation of innate immune cells as well as the relevant tissue milieu 

which influences their functions. The innate immune system is composed of multiple cell types which 

provide distinct and essential roles in tissue surveillance and antigen presentation as well as early re-

sponses to infection or injury. Functional defects that arise during aging lead to a reduced dynamic 

range of responsiveness, altered cytokine dynamics, and impaired tissue repair. Heightened inflamma-

tion influences both the dysregulation of innate immune responses as well as surrounding tissue mi-

croenvironments which have a critical role in development of a functional immune response. In par-

ticular, age-related physical and inflammatory changes in the skin, lung, lymph nodes, and adipose 

tissue reflect disrupted architecture and spatial organization contributing to diminished immune re-

sponsiveness. Underlying mechanisms include altered transcriptional programming and dysregulation 

of critical innate immune signaling cascades. Further, we identify signaling functions of bioactive lipid 

mediators which address chronic inflammation and may contribute to the resolution of inflammation 

to improve innate immunity during aging. © 2020 S. Karger AG, Basel

Inflammation and Aging

Aging is the single greatest risk factor for developing chronic disease. Compared to young-
er adults, the elderly are at increased risk of infection and experience greater morbidity 
and mortality upon infection [1]. Similarly, the elderly also have poor vaccine responses, 
making them more susceptible to vaccine-preventable disease such as influenza or vari-
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2 Goldberg/Shaw/Montgomery

cella zoster (causative agent in chickenpox and shingles) viruses, even when they have 
been vaccinated [2]. Central to this susceptibility is the functional deterioration of sys-
temic immunity, or “immune senescence.” This term encompasses the collective loss of 
immune protection during aging and includes atrophy of the thymus leading to decreased 
naïve T cell output, an increased proportion of experienced lymphocytes contributing to 
adaptive immune memory but limiting responses to novel targets, an increased propor-
tion of myeloid cells released from the bone marrow, and impaired functions of multiple 
existing immune cell types. Immune senescence is also characterized by functional dys-
regulation in immune cells at the cellular and molecular levels, ultimately leading to in-
creased infection susceptibility and poor vaccination responses in the elderly as discussed 
in detail throughout this chapter.

Underlying many deficiencies in immunity is a chronic proinflammatory state. Many 
age-related diseases are driven by and promote increased inflammation, and elevated cir-
culating inflammatory markers such as CRP, TNFα, and IL-6 correlate with age-related 
conditions including atherosclerosis [3] and frailty [4]. Importantly, even clinically 
healthy elderly individuals exhibit elevated inflammatory cytokines in serum [5]. While 
the precise source and cause of inflammation during aging is still unknown, this so-called 
“inflammaging” state contributes to the onset of multiple comorbidities in the elderly, in-
cluding but not limited to Alzheimer’s disease, cardiovascular disease, muscle wasting, 
and immune senescence [6], making older adults a uniquely challenging patient popula-
tion. Here, we will focus on the impact of inflammation on dysregulation of innate im-
mune responses and relevant tissue microenvironments that influence immune cellular 
function.

Critical Functions of Innate Immunity

The innate immune system is responsible for initial control of pathogens by directly elim-
inating infections, engaging nearby cells, and recruiting adaptive immune cells. In con-
trast to the adaptive immune system, which requires training and is exquisitely specific to 
particular pathogens, the innate immune system senses and responds to numerous infec-
tions directly. The innate immune system is composed of multiple cell types with distinct 
critical functions both in the circulation and following infiltration into tissues to provide 
early responses to infection or injury. Innate immune cells such as neutrophils and mono-
cytes circulate throughout the body and are capable of rapidly infiltrating tissues; macro-
phages and dendritic cells (DCs) reside within tissue and have important roles in tissue 
surveillance and antigen presentation. Innate immune cells rely on a variety of pattern 
recognition receptors (PRRs) to sense tissue disturbance and also recognize pathogenic 
invasion. Membrane-associated Toll-like receptors (TLRs) on the cell surface and within 
endosomes sense diverse structural patterns associated with pathogens such as lipopro-
teins, lipopolysaccharide, flagellin, and nucleic acids. Numerous studies have reported 
diminished responsiveness to TLR ligands in innate immune cells from elderly donors as 
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Inflammation Blunts Immunity in Aging 3

compared to younger donors and are discussed in more detail in the sections below. Nod-
like receptors and retinoic acid-inducible gene-I (RIG-I)-like receptors are cytosolic sen-
sors that respond to bacterial or viral molecular components to initiate inflammatory 
responses that limit pathogen spread. While aging affects each of these cell types and func-
tional responses differently, some unifying mechanistic alterations offer insights to im-
mune dysfunction in aging. 

Neutrophils
Peripheral blood polymorphonuclear leukocytes (PMNs), the most abundant circulating 
white blood cells, account for 45–75% of circulating leukocytes. An estimated 1011 PMNs 
are released from the bone marrow daily to maintain a continuous supply of these crucial 
yet short-lived terminally differentiated cells. PMNs circulate throughout the body and 
therefore can potentially impact every tissue. They are rapid early responders to sites of 
infection or tissue injury and have high phagocytic and inflammatory capacity to limit 
pathogen spread. PMNs also contribute to chronic sterile inflammatory diseases such as 
gout in which they periodically accumulate and reactivate in afflicted joints causing de-
bilitating pain in patients [7]. 

Despite their abundance and high inflammatory capacity, PMNs are less well charac-
terized in the field of aging immunology. PMNs from older donors have lower TLR1 ex-
pression that correlates with reduced activation of TLR1-dependent IL-8, CD11b, and 
glucose uptake [8]. While PMNs from healthy elderly donors have reduced phagocytic 
(FITC-labeled E. coli) capacity and increased superoxide in response to fMLP and PMA 
[9, 10], generalization of these findings has been complicated by differences noted from 
different stimuli and experimental conditions [11]. PMNs from elderly individuals also 
show reduced actin polymerization [12, 13], suggesting impairments in chemotaxis. In-
deed, in support of this possibility, PMNs isolated from aged mouse bone marrow exhib-
ited reduced chemotaxis [14]. In the aged, poor chemotaxis is proposed to prolong PMN 
presence in tissue, causing collateral tissue damage [14, 15]. 

PMNs can undergo a novel form of cell death, NETosis, in which DNA content con-
taining digestive and inflammatory enzymes is extruded from the cell. NETosis is a unique 
method to control pathogenic spread but is also recently implicated in sterile inflamma-
tion [16–18]. PMNs from old mice have impaired ability to undergo NETosis in response 
to in vivo cecal ligation and puncture-induced model of sepsis and also in vitro after stim-
ulation with TLR2 ligands, suggesting a cell-intrinsic defect in signaling to induce NET 
formation and/or extrusion [19, 20]. In parallel with these impairments, however, human 
PMNs from healthy older donors maintain their ability to activate the NLRP3 inflamma-
some when stimulated in vitro [21]. Despite certain PMN functions being retained during 
aging, the accumulated defects that have been identified outnumber them, and these mul-
tiple defects in critical early responding cells allow more rapid pathogenic spread early 
after infection, putting the elderly host at increased susceptibility to infection and morbid-
ity.
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4 Goldberg/Shaw/Montgomery

Monocytes
Monocytes are a heterogeneous subset of circulating myeloid cells that can infiltrate tissues 
and differentiate into macrophages or DCs. Their normal functions include phagocytosis, 
antigen presentation, and cytokine production. Multiple subsets of monocytes can be 
found in human blood at different stages of differentiation and maturity that are distin-
guishable by CD14 and CD16 expression [22]. Monocytes from older subjects have re-
duced production of cytokines after TLR1/2 stimulation that was associated with reduced 
surface TLR1 expression [23]; a generalized alteration in TLR-induced CD80 and CD86 
expression correlates with reduced responses to influenza vaccination [24]. Monocytes 
from older subjects also have significantly diminished IFN-α/β responses to RIG-I stimu-
lation [25]. Interestingly, these same monocytes retain the ability to produce proinflam-
matory cytokines upon stimulation, suggesting that aging may lead to cell-intrinsic dys-
regulation specifically in the IFN arm of this response [25, 26]. As there is no evidence of 
altered basal IFN expression with age, impaired IFN induction is representative of a mod-
el of age-related reduced dynamic range distinct from that of TLR-mediated proinflamma-
tory cytokine induction. However, a significantly higher percentage of unstimulated 
monocytes from older donors exhibited nuclear NF-κB (p65) translocation, i.e. a higher 
activation status at baseline, and these cells secreted significantly more TLR5-induced IL-8 
compared to monocytes from younger individuals [27], representing a possible avenue for 
vaccine adjuvant design. The age-related defects in monocytes have not yet been reported 
in other innate immune cells and highlight that each cell subset accumulates its own func-
tional defects ultimately culminating in impaired innate immune protection during aging.

Macrophages
Macrophages are versatile innate immune cells that are important for initiating proin-
flammatory immune responses in addition to roles in phagocytosis, resolution, and tissue 
repair after injury. In the steady-state, anti-inflammatory macrophages help maintain ho-
meostatic conditions within the tissue and become activated in response to infection or 
injury. Activated macrophages can secrete a variety of cytokines (e.g., TNFα, IL-1β, NO) 
that prime the inflammatory immune response and chemokines (MIP-2, KC) that recruit 
additional immune cells. After pathogen clearance, anti-inflammatory macrophages help 
clear apoptotic and necrotic debris and secrete cytokines and growth factors that promote 
tissue repair and regeneration. Mouse studies have shown the large variety of functions 
carried out by macrophages reflects the existence of multiple subsets and lineages of mac-
rophages, each occupying distinct niches within tissues. For example, resident macro-
phages have recently been reported to interact directly with the nervous system in the 
intestine [28] and adipose tissue [29, 30] to regulate tissue function. Taken together, these 
data indicate macrophages have a central role in maintaining tissue homeostasis and also 
orchestrating immune responses.

Despite this importance, relatively little is known about changes in tissue macrophage 
function during aging, largely due to their poor accessibility within tissues. Monocyte-
derived macrophages from human elderly human blood donors show impaired DC-
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Inflammation Blunts Immunity in Aging 5

SIGN-induced reduction in the expression of TLR3 following infection with West Nile 
virus (WNV) in vitro [31]. This impairment via the signal transducer and activator of 
transcription 1 (STAT1)-mediated pathway may be relevant for elevated cytokine produc-
tion contributing to permeability of the blood-brain barrier and increased severity of 
WNV infection in older individuals [31, 32]. Murine studies also support an age-related 
increase in influenza A virus (IAV) susceptibility that may contribute to impaired tissue 
repair and altered cytokine dynamics [33–35]. In aged mice, elicited peritoneal macro-
phages showed reduced phagocytosis of FITC-labeled Escherichia coli [36]. Importantly, 
this same study found in vitro differentiated bone marrow-derived macrophages from old 
mice did not have this defect, suggesting mechanisms beyond cell-intrinsic changes dur-
ing aging. Notably, peritoneal macrophages transferred from adult into old mice lost their 
phagocytic capacity. This result emphasizes that the tissue environment is a critical deter-
minant of macrophage function. 

Dendritic Cells
DCs are key sources of inflammatory cytokines and costimulatory molecules that instruct 
the development of the adaptive antimicrobial immune response. Multiple classes of DCs 
exist, with the most common being myeloid DCs (mDCs) that activate naïve T cells, and 
plasmacytoid DCs (pDCs) which are major sources of IFNα following viral infection. DCs 
reside within lymph nodes or other tissues and survey the local microenvironment and then 
migrate to nearby lymph nodes that are being patrolled by adaptive immune cells. Recent 
studies using a unique resource of tissue acquisition from human organ donors have re-
vealed that DC subset composition varies by tissue and age in humans, and these changes 
may impact site-specific immunity [37]. Both mDCs and pDCs from older donors show 
lower expression of TLRs globally and substantial decreases in cytokine production follow-
ing TLR stimulation [38, 39]. Recent studies of DCs detected lower levels of RIG-I from 
older human subjects [40]. Similarly, pDCs and monocyte-derived DCs from healthy older 
subjects also secrete less IFN in response to IAV [41–43] and to WNV [38, 40]. DC produc-
tion of type I IFN was significantly lower in older donors compared to younger donors, with 
diminished induction of late phase signaling responses, e.g. STAT1, IRF7, and IRF1, sug-
gesting defective regulation of type I IFN induction [40]. IFN production by pDCs is de-
creased in older HSV-2-infected mice owing to impaired IRF7 upregulation upon viral in-
fection, potentially further compromising antiviral immunity [44]. Multiple functional de-
fects in these critical cells that bridge the innate and adaptive immune responses greatly 
contribute to impaired immune activation and responsiveness to infection in the elderly.

Inflammation and Innate Immunity

While most vaccine responses are assessed by generation of antigen-specific memory T 
cells and protective antibody titers, proper activation of the innate immune system is es-
sential for orchestrating this process. Innate immune cells create local cytokine and che-
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6 Goldberg/Shaw/Montgomery

mokine gradients to recruit cells to sites of damage or infection. They also carry antigen 
back to lymph nodes to initiate adaptive immune cell activation and expansion. During 
aging, many of these critical functions performed by innate immune cells become com-
promised, leading to poor overall immune protection and vaccine responsiveness. The 
chronically elevated basal levels of proinflammatory cytokines in the elderly lead to im-
paired responsiveness of innate immune cells by raising the threshold of activation, there-
by compressing the dynamic range of responsiveness. Evidence from multiple studies in 
old mice illustrate the role of inflammatory cytokines in impaired innate immune func-
tion during aging. Splenic macrophages isolated from old IL-6-deficient mice have re-
stored secretion of TNFα, IL-1β, and IL-12 after ex vivo stimulation with LPS [45]. Simi-
larly, inflammatory monocytes were found to correlate with elevated serum TNFα and 
interfere with bacterial clearance from the lungs of old mice, but aged TNFα-deficient 
mice were able to effectively clear the infection [46]. Taken together, these data support a 
hypothesis that continuous bathing of innate immune cells in the inflammatory milieu of 
the aged individual reduces the abilities of these cells to sense and respond to signals such 
as tissue damage, infection, or vaccination. 

Influence of Tissue Milieu on Innate Immune Cell Function
Much of what is known about innate immune cell functional changes during aging has 
been elucidated in vitro in cells isolated from peripheral blood and do not reflect tissue 
milieu. Mounting a functional immune response depends not only on intrinsic respons-
es by innate immune cells, but also their ability to communicate with the neighboring 
cells around them. Animal models and studies of ex vivo human tissues have provided 
some insights into how the tissue microenvironment significantly shapes the function 
and identity of its resident immune cells [37, 47–49]. Rodent studies utilizing hetero-
chronic parabiosis, the surgical joining of a young and old animal in which a shared cir-
culatory system develops, have revealed environmental defects in the aged animal that 
can be improved by exposure to circulating factors from the young animal [50]. Simi-
larly, adoptive cell transfers of adult or old cells into reciprocally aged hosts reveal that 
the aged environment impairs functional responses of innate immune cells [36, 51, 52]. 
Although these experimental techniques are limited to inbred animal models, innovative 
studies in lung transplant patients have recently been used to study tissue-resident T cells 
in humans [53]. In the following sections, we describe selected tissues that exhibit strong 
age-related alterations and discuss how these might impact innate immunity and vaccine 
efficacy.

Skin
The skin is the largest organ in the human body and represents one of the first physical 
barriers to protect against pathogens. Skin also contains a unique composition of innate 
immune cells, including macrophages, innate-like γδ T cells, as well as classical memory 
αβ T cells, and a specialized subset of DCs called Langerhans cells. While obvious physical 
appearance reflects important cellular and tissue organizational changes in aged skin, we 
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Inflammation Blunts Immunity in Aging 7

lack a detailed understanding of how the immune system in skin changes with age. To ad-
dress this gap, sophisticated methods have been developed by Dr. Arne Akbar and col-
leagues in which a suction blister is used to collect leukocytes and fluid from the skin after 
cutaneous antigen challenge. They found impaired memory T cell migration to the skin 
after challenge with fungal (Candida albicans), viral (varicella zoster virus, VZV), and 
mycobacterial (tuberculin PPD) antigen challenges. They further showed with the C. al-
bicans model that impaired memory CD4 T cell homing to aged skin is due to reduced 
TNFα secretion from macrophages [54]. The reduced TNFα led to impaired endothelial 
activation of selectin molecules including E-selectin, VCAM-1, and ICAM-1. Ultimately, 
the lower adhesion molecule expression on the endothelium led to reduced memory CD4 
T cell migration to the skin. Importantly, the defects in both the endothelium and macro-
phages could be restored in vitro, suggesting they reflect the influence of the tissue envi-
ronment within the skin and may be reversible. 

Skin biopsies from elderly individuals exhibit elevated p38 MAPK transcriptional sig-
natures that correlated with impaired VZV skin response. Treating these subjects with an 
oral MAPK inhibitor prior to antigen challenge improves systemic inflammation and 
their VZV-specific recall response in the skin [55]. Similar depressed immune responses 
have been reported in a murine skin infection model of Staphylococcus aureus in which 
old mice have delayed bacterial clearance, delayed wound closure, and reduced neutrophil 
chemotaxis to the wound site [56]. This highlights the detrimental effects of elevated bas-
al inflammation that compresses the dynamic range of innate immune activation in the 
elderly. Improving immunity in aging skin has potentially enormous clinical implications 
particularly as skin is a common vaccination site. Perhaps improving immune cell recruit-
ment to and from the skin and draining lymph nodes represents a realistic approach to-
wards achieving the goal of improved vaccine efficacy in the elderly.

Lung
Like the skin, the lung is another barrier tissue constantly exposed to environmental and 
microbial pathogens. Individuals aged 75–84 have nearly 20-times higher morbidity and 
mortality compared to younger adults after acute lung injury [57]. People over age 65 ac-
count for 70% of influenza- and pneumonia-related hospitalizations [58], and studies in 
mice show that aging increases susceptibility to secondary bacterial challenges after in-
fluenza infection [59]. Together, these studies highlight multiple defects in the aging 
lung, including local immune responsiveness and tissue maintenance and repair, which 
increases host vulnerability to lung damage and disease. Age-related changes in the lung 
milieu are significant given that even in young animals the lung environment strongly 
regulates the activation and function of resident immune cells [60]. In a prospective study 
of emergency room patients with burn inhalation injuries, older patients were at in-
creased risk of death after burn injury and had higher concentrations of inflammatory 
cytokines in their serum and bronchoalveolar lavage fluid [61]. High vascularization 
within the lung makes it a unique site that can be rapidly infiltrated by circulating leuko-
cytes. Increased neutrophil infiltration and activation is associated with excess immune 
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8 Goldberg/Shaw/Montgomery

pathology during infection in mouse and human studies [25, 62–66]. As described above, 
dysregulation of neutrophil responses and impaired chemotaxis could impair pathogen 
clearance and prolong detrimental inflammatory responses in the lungs of elderly indi-
viduals.

Lymph Node
Lymph nodes are the central hubs in which innate and adaptive immunity coordinate 
productive immune responses. They are highly organized structures strategically placed 
at intersections between draining lymphatics and the circulating blood vasculature. Upon 
encountering and processing pathogens in the periphery, innate immune cells such as 
DCs migrate to nearby lymph nodes. Migration of cells towards and within lymph nodes 
has been expertly reviewed previously [67]; resident innate immune cells, including mac-
rophages, are poised to respond immediately in the case of pathogen entry, or relay im-
mune information further into the lymph node. T cell and B cell zones in the inner cortex 
are spatially organized and surrounded by macrophages. Lymphocytes enter through high 
endothelial venules, guided by fibroblastic reticular cells. Here, they scan migratory DCs 
for cognate antigen. T and B cells that are continuously circulating and patrolling the body 
migrate through these lymph nodes and upon encountering a DC-presented cognate an-
tigen, clonally expand and mount a massive and highly-specific adaptive immune re-
sponse with the purpose of eradicating the microbial pathogen and generating long-last-
ing immunity. In order for this entire process to be successful, many coordinated events 
must be executed successfully.

Proper function of lymph nodes requires intense cross-talk between hematopoietic 
cells and the stroma. Accumulation of lipid droplets and increased fibrosis are common 
features of the disrupted lymph node architecture and disrupted spatial organization as-
sociated with aging [68, 69]. These structural changes not only impair physical commu-
nication between lymphocytes and the lymph node stroma, but also probably perturb the 
environment and disrupt normal homeostasis within the lymph node. Multiple studies 
have reported reduced lymphocyte cellularity of aged lymph nodes both during the basal 
state and during infection [52, 68, 70]. Disrupted organization of T cell and B cell zones 
in the aging lymph node further compounds the diminished immune response and may 
explain, in part, lower-magnitude T cell responses and lower antibody responses after in-
fection or vaccination in the elderly.

Adipose Tissue
Although classically considered an energy storage organ, it is becoming increasingly clear 
that adipose tissue is also an immunologically responsive organ that contributes to sys-
temic inflammation. Adipose tissue remodeling and redistribution into abdominal fat are 
common features of age-related adipose tissue dysfunction. Importantly, these physiolog-
ical changes can occur independently of obesity. In addition to increased visceral adipos-
ity, ectopic lipid accumulation in tissues, including bone marrow, the thymus, liver, and 
muscle increases during healthy aging and can upset normal tissue homeostasis [71].
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Inflammation Blunts Immunity in Aging 9

As adipose tissue inappropriately accumulates in tissues and lymphoid organs, it dis-
rupts tissue architecture, function, and perhaps essential cell-cell communication. Adi-
pose tissue secretes cytokine-like molecules, known as adipokines, such as leptin and ad-
iponectin that modulate immune cell function. Besides these secreted factors, the adipose 
tissue itself contains a unique immune phenotype [72]. Under steady-state conditions, the 
adipose contains primarily anti-inflammatory macrophages, γδ T cells, and other innate 
immune cells with tissue maintenance and reparative properties. However, during aging, 
the composition of the adipose-resident immune populations become skewed and heav-
ily enriched for proinflammatory macrophages, B cells, and memory T cells [73–75]. 

Mouse studies indicate that adipose-resident macrophages exhibit particularly intrigu-
ing changes during aging. Unlike obesity, in which proinflammatory macrophages in-
crease numerically, aging is accompanied by an overall reduction in the proportion of 
macrophages in visceral adipose tissue, although the population still manifests a gener-
ally proinflammatory phenotype [73]. The macrophages that remain occupy several dis-
tinct niches, including crown-like structures surrounding dead or dying adipocytes, scat-
tered in the parenchyma, and lining sympathetic nerves within the adipose tissue [29]. 
The “aged” macrophages gain a unique transcriptional profile that includes upregulation 
of enzymes monoamine oxidase A (Maoa) and catechol-O-methyltransferase (Comt) that 
degrade catecholamines, leading to impaired lipolysis during fasting. This phenotype may 
also be driven by chronic low-grade inflammation by macrophages, as NLRP3 inflamma-
some-deficient old mice are protected from lipolysis resistance. Notably, NLRP3-deficient 
mice are also protected from numerous age-related inflammatory diseases, including as-
pects of immunosenescence [76, 77], sarcopenia [78], and experimental lung fibrosis [79], 
highlighting its role as a potential driver of age-related inflammation. While human stud-
ies show transcriptional activation of inflammasome gene signatures during aging [78], 
more studies are needed to formally understand how these proinflammatory immune 
complexes promote immune senescence during aging. 

Mechanisms of Dysfunction in Innate Immune Cells during Aging

For the numerous innate immune defects that develop with age, the impact of tissue mi-
lieu on innate immune cells may have particular relevance, but data from humans are 
limited, and additional novel approaches are desperately needed. Multiple mechanisms 
that cause cell-intrinsic defects have been identified in experiments using innate immune 
cells isolated from peripheral blood of elderly and adult donors. Notably, these mecha-
nisms may occur simultaneously within particular cells, or across multiple populations, 
ultimately disarming the proper function of the aged innate immune system.

Altered Transcription after Stimulation
Transcriptional programming coordinates the proinflammatory programs needed for in-
nate immune control of pathogens. PBMC from healthy aged participants had elevated 
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10 Goldberg/Shaw/Montgomery

baseline type 1 interferon gene signature compared to PBMC from younger adults, and 
levels could not be further induced by influenza vaccination [80]. Younger adult PBMC 
also showed increased oxidative phosphorylation and mitochondrial biogenesis programs 
that were absent in older adult PBMC, particularly in older adults that did not respond to 
vaccination. Circulating isolated monocyte subsets from elderly individuals showed al-
tered transcriptional profiles in response to ex vivo TLR ligand stimulation including ex-
aggerated superoxide and oxidative stress program signatures [81]. A large multicohort 
analysis showed that baseline gene expression predicts influenza vaccination response in 
young adults. Fifteen genes (upregulated: RAB24, GRB2, DPP3, ACTB, MVP, DPP7, 
ARPC4, PLEKHB2, ARRB1; down-regulated: PTPN22, PURA, SP4, CASP6, NUDCD2) 
were identified in young adults classified as “high responders” to influenza vaccination. 
These nine upregulated genes were not induced in older individuals, and no genes in old-
er adults were differentially expressed in low and high responders, suggesting distinct re-
sponses lead to lower vaccine response in older individuals [82]. Hematopoietic stem cells 
(HSCs) from older individuals exhibit hypermethylation of the IRF8 locus [83], and thus 
epigenetic regulatory mechanisms may link the well-known myeloid skewing of HSCs 
with impaired IFN induction with age [26]. These age-related impairments may contrib-
ute to impaired vaccine response and the increased susceptibility of older persons to IAV 
infection.

Impaired Mer Signaling
TAM receptors (Tyro3, Axl, and Mer) are a family of receptor tyrosine kinases that play 
critical roles in tissue homeostasis by recognizing and inducing phagocytosis of apoptot-
ic cells. TAMs are also negative regulators of TLR-mediated immune responses that 
broadly inhibit both TLR and TLR-induced cytokine receptor cascades to limit inflamma-
tion [84]. The importance of TAMs in immune activation is illustrated by the observation 
that reduced levels of TAMs in humans and in a TAM-deficient mouse model are associ-
ated with susceptibility to autoimmune disease and higher or chronic inflammation [85–
87]. Monocytes from older donors showed elevated expression of TAM receptors but 
impaired activation of the Mer pathway following binding of the ligand Protein S, leading 
to impaired signaling through AKT [88]. The elevated expression of TAM receptors in 
monocytes from older adults has important implications for dysregulation of immune 
responses in aging, in particular as the Mer pathway is critical for clearance of apoptotic 
cells that contribute to inflammation in aging [89, 90]. Defective TAM signaling in alveo-
lar macrophages in old mice may also explain impaired phagocytic clearance of apoptot-
ic PMNs and increased mortality during influenza infection [91]. Further, TAMs play a 
key role in mediating autophagy [84, 85], and the reduced efficiency of autophagy in aging 
has been shown to contribute to accumulation of damaged proteins in cells [92]. The im-
portance of TAMs in aging may be especially significant in tissue, where levels of Mer are 
highest, and may present avenues for modulation of chronic tissue inflammation noted 
in aging.
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Inflammation Blunts Immunity in Aging 11

Reduced RIG-I Signaling
Innate immune cells rely on intracellular sensors known as PRRs to recognize pathogen-
associated molecular patterns. One such PRR induced during viral infection by recogni-
tion of 5′-triphosphate (5′-ppp) is the RIG-I which induces type 1 IFN to control viral 
infections. Recent studies of DCs detected lower levels of RIG-I from older human sub-
jects [40], and monocytes from older subjects have significantly diminished IFN-α/β re-
sponses to RIG-I stimulation [25]. Total human PBMCs exhibit impaired IFN responses 
to 5′-ppp RNA transfection relative to younger controls 6 h after stimulation, although in 
this complex cell population responses were comparable after 24 h [93]. Studies of poten-
tial mechanisms mediating these age-associated findings revealed that monocytes from 
older adults exhibit decreased expression of the adaptor protein TRAF3 as a consequence 
of its increased proteasomal degradation with age, thereby impairing the RIG-I primary 
signaling pathway for type I IFNs. Monocytes from older adults also fail to effectively up-
regulate the interferon regulatory transcription factor IRF8, compromising their ability to 
participate in IFN induction through secondary RIG-I signaling [26]. Such RIG-I signal-
ing defects in multiple cell types could likely contribute to increased risk for infection and 
morbidity and mortality from viral infections in the context of aging. As the innate im-
mune system helps instruct appropriate responses of the adaptive immune system, these 
innate signaling defects may also contribute to impaired adaptive immunity and vaccine 
efficacy during aging.

Energy Balance and Inflammation Regulation
Recent progress targeting metabolic programming suggests potential treatment strategies 
to enhance immune responses in older adults. While several non-pharmaceutical dietary 
interventions have demonstrated improved longevity in animal models, including calorie 
restriction, fasting-mimicking diet, and ketogenic diet, few have investigated their impact 
on immune function during aging [94–97], and this area presents opportunities for future 
investigation. Many lifespan-extending interventions induce a negative energy balance in 
which energy expenditure exceeds energy consumption [98–101]. In this adaptive starva-
tion response, the body switches from glucose to lipid breakdown to support energetic 
requirements via production of short-chain fatty acids such as ketone bodies. Accord-
ingly, ketogenic diets comprised almost entirely of fat and protein actually promote fat 
break down and weight loss because of this adaptation to low-glucose availability. In ad-
dition to serving as an alternative fuel source, the most abundant ketone body, β- 
hydroxybutyrate, potently inhibits NLRP3 inflammasome activation in macrophages, 
monocytes, and neutrophils from adult and older humans and mice [21, 102] and extends 
lifespan in Caenorhabditis elegans [103]. Notably, two studies recently reported increased 
lifespan and improved cognition in old mice fed a ketogenic diet [95, 96]. This highlights 
the importance of whole-body metabolism in regulating age-related inflammation and 
presents a critical window for future exploration. 
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12 Goldberg/Shaw/Montgomery

Immune Cell Energy Metabolism
Metabolic programming in immune cells is a critical determinant of their downstream 
functions and mounting a robust immune response is energetically expensive. Increased 
glycolysis is generally associated with elevated proinflammatory activity, whereas fatty 
acid oxidation and oxidative phosphorylation is associated with quiescence and anti-in-
flammatory functions [104]. At the population level, a balance between these programs 
allows for proinflammatory immune-mediated pathogen clearance, while preserving tis-
sue repair functions and long-lived immunity in the case of adaptive immune cells. In ad-
dition to the importance of overall metabolic programming, specific metabolites such as 
succinate, itaconate, and β-hydroxybutyrate regulate immune cell function [105, 106]. 
Therefore, targeting immune cell metabolism represents an attractive strategy for modu-
lating immune responsiveness and vaccine efficacy. It should be noted that the simplified 
model presented here is derived from mostly in vitro studies and whether this program-
ming balance occurs in vivo or is maintained during aging is not known. Future studies 
are needed to test whether basal metabolic programming and/or activation-induced met-
abolic upregulation in innate immune cells is retained during aging and what cues stimu-
late this reprogramming. 

Bioactive Lipids
In addition to metabolic programming, dietary metabolites can have important cell sig-
naling functions. While we have focused on innate immune activation defects that con-
tribute to increased infection susceptibility in the elderly, an equally important aspect of 
the innate immune system is the resolution of inflammation. Key to resolution is a family 
of pro-resolution bioactive lipid mediators synthesized from omega-3 fatty acids, namely 
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) – the resolvins, lipoxins, 
and maresins [107]. Aged mice exhibit delayed bacterial clearance and have reduced levels 
of these pro-resolving lipid metabolites [108]. Innate immune cells are capable of metab-
olizing DHA and EPA to generate these metabolites, and this improves efferocytosis in 
human monocytes [108]. Finally, MerTK-dependent ERK activation induces pro-resolv-
ing lipoxin LXA4 production in human monocyte-derived macrophages [109]. Perhaps 
age-related changes in tissue milieu can be restored by improving inflammation resolu-
tion in the elderly. Future investigations in this domain are warranted to explore their 
potential for dampening chronic inflammation during aging to improve innate immu-
nity. 

Perspectives and Future Directions

The impact of chronic inflammation on innate immunity, both within immune cells and 
their tissue microenvironment, highlight a critical area for future investigation and poten-
tial novel therapeutic interventions. As we have described, multiple interconnected defi-
cits arise during aging, both within innate immune cell subsets and the tissue milieu, to 
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Inflammation Blunts Immunity in Aging 13

impair in vivo innate immunity in the elderly. With these complex layers of regulation, it 
remains challenging to fully define mechanisms of innate immune deficiencies. Collec-
tively, these defects lead to poor priming of the adaptive immune system, culminating in 
poor immune protection and vaccination in the elderly. Given that in vitro stimulation of 
isolated circulating immune cells probably does not fully reflect their responsiveness with-
in the tissue milieu, future studies will require appropriate in situ tissue studies and animal 
models. Along with development of new approaches to define age-related defects in in-
nate immunity, a critical priority is novel therapeutic interventions targeting systemic 
inflammation to address immune dysfunction and enhance healthy life-span. 
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